An Improved Retrievability-Based Cluster-Resampling Approach for Pseudo Relevance Feedback

نویسنده

  • Shariq Bashir
چکیده

Cluster-based pseudo-relevance feedback (PRF) is an effective approach for searching relevant documents for relevance feedback. Standard approach constructs clusters for PRF only on the basis of high similarity between retrieved documents. The standard approach works quite well if the retrieval bias of the retrieval model does not create any effect on the retrievability of documents. In our experiments we observed when a collection contains retrieval bias, then high retrievable documents of clusters are frequently retrieved at top positions for most of the queries, and these drift the relevance feedback away from relevant documents. For reducing (retrieval bias) noise, we enhance the standard cluster construction approach by constructing clusters on the basis of high similarity and retrievability. We call this retrievability and cluster-based PRF. This enhanced approach keeps only those documents in the clusters that are not frequently retrieve due to retrieval bias. Although this approach improves the effectiveness, however, it penalizes high retrievable documents even if these documents are most relevant to the clusters. To handle this problem, in a second approach, we extend the basic retrievability concept by mining frequent neighbors of the clusters. The frequent neighbors approach keeps only those documents in the clusters that are frequently retrieved with other neighbors of clusters and infrequently retrieved with those documents that are not part of the clusters. Experimental results show that two proposed extensions are helpful for identifying relevant documents for relevance feedback and increasing the effectiveness of queries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Improving Retrievability of Patents in Prior-Art Search

Prior-art search is an important task in patent retrieval. The success of this task relies upon the selection of relevant search queries. Typically terms for prior-art queries are extracted from the claim fields of query patents. However, due to the complex technical structure of patents, and presence of terms mismatch and vague terms, selecting relevant terms for queries is a difficult task. D...

متن کامل

Visual Resampling for Pseudo-Relevance Feedback during Speech-based Video Retrieval

A method is proposed that makes use of visual reranking to selectively sample feedback sets for Pseudo-Relevance-Feedback during speechtranscript-based video retrieval. Observed performance improvement is indicative of the ability of visual reranking to increase the relevance density of the feedback set.

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016